
International Journal of Thermophysics, Vol. 9, No. 5, 1988 

Phase Equilibria of Associating Fluids of 
Spherical and Chain Molecules 1 

G. Jackson,  2 W. G. Chapman, 2 and K. E. Gubbins 2 

The development of equations of state for strongly associating fluids and fluid 
mixtures has proved over the years to be a difficult problem. The first-order 
perturbation theory solution of a resummed cluster expansion has been used to 
investigate the effect of molecular associations on the critical and phase 
coexistence properties of fluids with one and two off-center attractive sites. The 
individual molecules are represented by hard-sphere repulsive cores with 
square-well attractive sites. Model systems comprising chains of hard spheres 
have also been examined. Isothermal-isobaric Monte Carlo simulations of 
hard-sphere fluids with one and two attractive sites are shown to be in good 
agreement with the results of the theory. A simple van der Waals mean-field 
term is also added to account for the dispersion forces. The critical points and 
phase equilibria of the associating fluids are determined for various values of the 
strength and range of the attractive site, as well as for different chain lengths. 
The theory can treat fluids with strong hydrogen-bonding associations such as 
the carboxylic acids the aliphatic alcohols, hydrogen fluoride, water, etc. 

KEY WORDS: associating fluids; computer simulations; equation of state; 
mixtures; perturbation theory; phase equilibrium. 

1. I N T R O D U C T I O N  

Bina ry  and  t e rna ry  mix tu re s  of  indus t r i a l  in te res t  of ten  inc lude  c o m p o n e n t s  

which  assoc ia te  s t rong ly  wi th  themse lves  a n d / o r  each  other .  E x a m p l e s  

of  these  sys tems  are  the  a l ipha t i c  a l c o h o l - a l k a n e ,  a l k a n e - w a t e r ,  

a l c o h o l - w a t e r ,  a l c o h o l - a r o m a t i c ,  a n d  w a t e r - a r o m a t i c  mix tu res ;  typ ica l  

t e rna ry  sys tems  are  the  a l k a n e - a l c o h o l - w a t e r  a n d  a r o m a t i c - a l c o h o l - w a t e r  
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mixtures. The phase equilibria of such mixtures are richly complex, with 
varying degrees of liquid-liquid immiscibility including closed-loop 
immiscibility. 

Whereas fairly simple theories provide a good description of nonpolar 
and weakly polar fluids, theories for strongly polar and associating fluids 
have met with only limited success. The chemical theory of solutions first 
developed by Dolezalek [1, 2] is the oldest method for treating associating 
mixtures. It postulates the existence of distinct molecular species in 
solution, which are assumed to be in chemical equilibrium. An important 
disadvantage of this approach lies in the arbitrary way in which one 
decides which species are present. After assuming the equilibrium scheme, 
one is then faced with the problem of determining the equilibrium 
constants together with their temperature dependences. An alternative 
approach is that of the lattice theories, which consider the structure of the 
liquid to be solid-like in character. Equations of state based on lattice 
theories 1-2] have been applied, with varying degrees of success, to a wide 
variety of nonelectrolyte liquid mixtures containing nonpolar and polar 
fluids. However, the underlying concept of representing a liquid's structure 
by a lattice is a vast oversimplification, and important density and entropy 
effects cannot be accounted for. Thus, lattice theories are limited mainly to 
predicting the basic qualitative features of a system's properties. 

A more promising route leading to an understanding of associating 
fluids involves theories which are firmly based in statistical mechanics. The 
strong, anisotropic molecular interactions found in these systems are incor- 
porated in the foundations of the theory by using simple, well-defined 
potential models. Recently, a theory has been proposed by Wertheim [3] 
to deal with these interactions in a simple way. Wertheim's theory is based 
on a resummed cluster expansion which is made in terms of two densities, 
the usual density p, and the monomer density Po. The complex graphical 
expansions can be simplified by assuming that the repulsive cores restrict 
the orientationally dependent attractive forces to only dimer formation at 
each bonding site. As a result, the final expression takes the form of a 
thermodynamic perturbation theory which is relatively simple to use. This 
approach has been used to deal with spherical molecules with multiple 
bonding sites. We have also extended the theory to chain molecules and to 
associating mixtures. 

2. SPHERICAL MOLECULES 

The compressibility factor Z =  P/(pkT) (P is the pressure, T the 
temperature, p the number density, and k Boltzmann's constant) for an 
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associating fluid of spherical molecules can be written as a sum of separate 
contributions 

Z = ZHS -[- ZMF -1- Zbond (1) 

Here, ZHS is the compressibility factor due to the hard-sphere repulsive 
cores, ZMF is the mean-field contribution to the free energy due to the 
dispersion forces, and Zbond is the change due to bonding. 

The hard-sphere compressibility is accurately given by the equation of 
Carnahan and Starling [4]  

1 +F/+~2--//3 
Z . s  - (1 - - , I )  ~ (2) 

in terms of the reduced density q = 0z/6) pG 3, where a is the hard-sphere 
diameter. 

The simplest approximation for the mean-field contribution to the 
compressibility factor is the van der Waals term 

ZM F = 8MF~ (3) 
kT 

where the constant eMV is a measure of the strength of the mean-field 
forces. 

For a one-component system with M bonding sites, the change in the 
compressibility factor due to bonding can be obtained from Wertheim [3]: 

Zbond= E l'l \ O?l /T,  N "-~A-- 
A e F  

(4) 

Here, we have used Chapman's simpler notation [-5], where X A is the frac- 
tion of molecules not bonded at a given site A. The summation in Eq. (4) is 
over all sites A in the set F (M in all). The individual XA values are 
obtained from 

zT~A = [ 

where A AB is defined by 

--1 
1 + E PX'nAAB (5) 

B e F  

AAB = f gHS(12) fAB(12) d(12) (6) 

gHS(12) is the reference-fluid distribution function, fAB = expE--~bAB(fAB)/ 
kT] -- 1 is the Mayer f function, ~bAB is the site-site attractive interaction, 

840/9/5-10 
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and d(12) denotes an integration over all orientations and separations of 
molecules 1 and 2. 

The integration involved in Eq. (6) for Age can be performed 
numerically by using the Verlet-Weis prescription for the hard-sphere 
distribution function [6] adjusted to fit simulation data. Alternatively, an 
approximate analytic expression for AAB can be used. If we assume that 
rZgHs(r) is constant and equal to the value at contact 0-2gHs(0-) over the 
short range of the site-site potential, AAR can be written [7] 

3AB = 47ZgHS(0- ) KABFAB (7) 

This expression was derived for a system with square-well bonding sites, 
where FAn = exp(eAB/kT)- 1, and each AB site-site interaction is charac- 
terized by the square-well depth --/3AB" gHS(a) is obtained from the virial 
equation [8], gHS(0-)=(ZHs--1)/4q, and KAB is an integral which 
measures the volume available for bonding to sites A and B on molecules 1 
and 2 (see Ref. 7 for a precise definition in terms of a given potential 
model). In general, the solution of Eq. (5) for XA is found using an iterative 
procedure; however, in the special cases of molecules with one or two 
attractive sites an analytic expression can be written. 

Computer simulations which accurately calculate the thermodynamic 
properties of a fluid with a specified potential model can be used to test the 
theory. Isothermal-isobaric (NPT) Monte Carlo (MC) simulations were 
performed for hard spheres with square-well bonding sites of energy -/3site 
and with a bonding volume K. For the system with one bonding site 
/3site = 7kT and K =  1.485 x 10 4 0.3. In the case of the system with two 
bonding sites, the sites were placed on directly opposite sides of the sphere, 
and /3site = 5kT and K =  2.970 x 10 4 0-3. These values were chosen for the 
parameters of the site site potential because they give physically reasonable 
results for real systems which can be modeled by molecules with one and 
two bonding sites. The actual potential model used is described in more 
detail elsewhere I-7]. 

In Fig. 1 for the fraction of molecules present as monomers, X, we 
compare the results of NPT MC simulations with the corresponding results 
calculated using the theory [7]. As mentioned earlier, the calculation of 
AAB and X requires the hard-sphere radial distribution function. The solid 
curves in these figures are obtained using the Verlet-Weis [6] hard-sphere 
distribution function, and the dashed curves are obtained using the alter- 
native analytic expression for AA~, Eq. (7). The theoretical results for a 
hard-sphere system with one (Fig. la) and two (Fig. lb) attractive sites are 
in good agreement with the simulation data. As expected, the monomer 
concentration decreases with density as more and more bonding takes 
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Fig. 1. The mole fraction of monomers 
X from NPT Monte Carlo simulations 
(circles), theory (solid curve), and the 
approximate solution to the theory 
(dashed curve). (a)Hard spheres with 
one bonding site, gsite=7kT and K= 
1.485x 10-4o 3. (b) Hard spheres with 
two bonding sites, ~site= 5kT and 
K= 2.970 x 10 4~3. 

place. In the case of the one-site system, the curves calculated from Eq. (7) 
(dashed curves) are virtually indistinguishable from those of the exact 
numerical integration (solid curves). 

The equation of state for a fluid of hard spheres with anisotropic 
attraction sites was given by Eq. (1). We have calculated the coexistence 
properties of the associating hard-sphere fluids with one or two bonding 
sites for various values of the site-site square-well interaction strength esite 
reduced with respect to the mean-field energy, * - 8 s i t e -  8 s i t e [ ~ 3 M F .  In every case 
the bonding volume was given the value of K* =4 .424x  10 -5, where 
K* = K/a  3. 

The densities of the coexisting vapor and liquid phases are shown in 
Fig. 2 as a function of the reduced temperature T*  = k T / e M v  for the 
one-site system. The curves denoted by 0 and oe represent the limits of no 
association and full association, respectively. Systems with intermediate 
values of esite* have also been investigated; one can see that the main effect 

(b) 
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Fig. 2. Coexisting vapor and liquid densities r/ as a function 
of the reduced temperature T* for hard-sphere fluids with one 
bonding site. The curves are labeled with the corresponding 
values of e*te, and in all cases the bonding volume is K * =  
4.424 x 10 5. The locus of the critical point for different values 
of e*te is shown by the dashed curve. 

of a strong association is to increase the critical temperature and hence the 
range of vapor-liquid coexistence. The dashed line shown in Fig. 2 
represents the locus of the critical point. The corresponding coexistence 
curves for a hard-sphere fluid with two bonding sites A and B, where only 
AB bonding is allowed, are shown in Fig. 3. The effect of having two 
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Fig. 3. Coexisting vapor and liquid densities n, as a function 
of the reduced temperature T* for the hard-sphere systems 
with two bonding sites. The curves are labeled with the 
corresponding values of e*te, and in all cases the bonding 
volume is K* =4.424 x 10 -5. 
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bonding sites shifts the coexistence curves to much higher temperatures 
than for the system with one bonding site. In the case of the one-site 
system, the phase behavior lies somewhere between the discrete limits of no 
association and full dimerization. The situation is quite different for an 
associating fluid with two bonding sites, since the molecules can associate 
to form chains of any length. 

3. CHAIN MOLECULES 

The compressibility factor Z H c = P / ( p k T  ) for homonuclear chain 
molecules made up of m hard spheres is given by [9] 

l + r / + q 2 - r / 3  m - 1  1+q-~ /2 /2  
ZHC= ( 1 - - , )  3 m (1 -- ,)(1 -- r//2) (8) 

where q = (~/6)pa 3 is the reduced density of spheres. This equation is 
obtained by using Wertheim's theory to bond spheres into chains. For the 
hard-chain system the second virial coefficient is determined from Eq. (8) 
as 

(0z.c) 
o2= \ 0p /Io=0 (9) 

m26~ 5 

In the case of an infinitely long chain (m ~ ~ )  the second virial coeff• 
becomes 

L2r 
B2 - (10) 

4 

where the length of the straight chain is L = ma. This value of the second 
virial coefficient happens to be the same as the value obtained for the 
second virial coefficient of an infinitely long hard rod [10]. 

The properties of hard-chain molecules calculated from Eq. (8) can be 
compared with the computer simulation results of Tildesley and Streett for 
a hard-disphere (m = 2) fluid [ 11 ] and with simulation results for flexible 
chains made up of m = 4, 8, and 16 tangent hard spheres by Dickman and 
Hall [12]. In Fig. 4 we show the compressibility factor in terms of the 
reduced density of chain molecules. Excellent agreement is found between 
the results of theory and those of simulation for the hard-disphere fluid, 
m = 2. Good agreement is found in the case of chains of four hard spheres, 
m = 4, although the theory slightly ovel:estimates the simulation results for 
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Fig. 4. The compressibility factor P/(pckT) for chains of 
m = 2, 4, 8, and 16 hard spheres, where Pc is the number den- 
sity of chains. The computer simulation results of Tildesley 
and Streett [-10] for m = 2 and of Dickman and Hall [11] for 
m = 4 ,  8, and 16 are represented by the data points, and the 
solid curve is obtained from Eq. (8). 

moderate liquid densities (0.2 < r/< 0.4). A similar result is also found for 
chains of eight spheres, m = 8, but deviations of the theoretical results from 
the exact simulation data are now more noticeable than for the shorter 
hard-sphere chains. The agreement is not as good for the chains with 
m = 16, which indicates the inability of the theory to account for the steric 
self-hindrance of the longer chains. 

In order to study the phase equilibria of associating chain molecules, 
mean-field and bonding contributions must be included: 

Z ~- ZHC --[- ZMF + Zbond (11) 

If we assume that each sphere in the chain contributes to the mean-field 
energy, Eq. (3) can be used for ZMV. Zbo,,d is obtained by using the first-or- 
der theory as in Section 2 (see Ref. 9 for more details). The coexistence 
properties of associating hard-chain fluids with one or two bonding sites 
have been determined using Eq. (11). In all cases the site-site bonding 
volumes and interaction strengths are given the values of K* = 4.424 x 10 5 
and ~*te = 1.0. The reduced densities of spheres in the coexisting vapor and 
liquid phases are shown in Fig. 5 as a function of the reduced temperature 
T * =  kT/~MV for chains of various lengths m with one bonding site. The 
main effect of increasing the number of spheres in the chain is to increase 
the range of vapor-liquid coexistence to higher temperatures. The dashed 
line shown in Fig. 5 represents the locus of the critical point, and it is 
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Fig. 5. Coexisting vapor and liquid densities, r/, as a function 
of the reduced temperature, T*, for associating chains with 
one square-well bonding site. As well as having bonding sites, 
the chain molecules have mean-field attractions to account for 
the dispersion forces. The curves are labeled with the 
corresponding values m, the number of spheres in the chain. In 
all cases the strength of the site-site square-well interaction is 
~s~te : 1 ,0 ,  and the bonding volume is K* = 4.424 x 10 5. The 
locus of the critical point for different values of rn is shown by 
the dashed curve. 
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Fig. 6. The vapor-pressure curves for associating chains with 
one bonding site, for various sizes m .  ~s~te = 1.0 and K * =  
4.424 x 10 5 for all the systems. The dashed line represents the 
locus of critical points. 
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Fig. 7. The vapor-pressure curves for associating chains with 
two bonding sites, for various values of m. e*t~ = 1.0 and K* = 
4.424 x 10 5 for all the systems. 

clear that the critical density falls as the chain length increases. The 
vapor-pressure curves obtained for the chain fluids with one bonding site 
are plotted in Fig. 6; here, we show In P* {where P*=P[(Tr/6)a3]/~Mv} 
versus l/T* for chains of various sizes m. The slopes of the curves become 
more negative as the chain length increases, and a distinct change in slope 
is found at lower temperatures in the case of the longer chains, caused by 
increased bonding in the liquid phase. The corresponding vapor-pressure 
curves obtained for chain fluids of various sizes m with two bonding sites 
are shown in Fig. 7. As with the one-site system (Fig. 6), the slopes of the 
curves become more negative with increasing chain length; the values are 
more negative than those obtained for corresponding curves of the one-site 
system. However, the effect of the molecular association decreases for larger 
values of m, so that the chain size becomes the dominant effect. Although 
the effect of bonding seems to decrease with increasing chain size, the 
extent of association still has an influence on the shape of the 
vapor-pressure curves; the curves in Figs. 6 and 7 show sharp changes in 
the slope at lower temperatures due to increases in the bonding, especially 
for the longer chains. 

4. CONCLUSION 

We have developed an equation of state which can take into account 
the effects of both molecular shape and association. Results for the 
reference equation of state were compared with the computer simulation 
data, and excellent agreement was obtained. The next phase of the research 
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will involve the deve lopmen t  and  test ing of a more  sophis t ica ted  equa t ion  
of s tate based  on the equa t ions  of the present  work.  Fu r the rmore ,  we have 
recent ly ex tended  these equa t ions  to deal  with mixtures  of  associa t ing  chain  
molecules  [ 9 ]  and  p lan  to invest igate  the effects of assoc ia t ion  in b ina ry  
and  t e rnary  mixtures  of indus t r ia l  interest.  
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